Residue Classes with Order 1 or 2 and a Generalisation of Wilson’s Theorem

نویسنده

  • Yimin Ge
چکیده

Proof. Suppose first that (m− 1)! ≡ −1 (mod m) for some positive integer m. If m is not prime then there exists a divisor d of m with 1 < d < m, so d|(m− 1)!. But d|m, so d| − 1, a contradiction. Thus, m must be prime. Suppose now that m is prime. If some residue class x modulo m has got a multiplicative inverse x with x 6≡ x (mod m) then they both drop out of (m−1)!. Hence, (m−1)! is congruent to the product of all integers x with 1 ≤ x ≤ m− 1 and x ≡ 1 (mod m). However, since m is prime, x ≡ 1 (mod m) ⇔ (x− 1)(x+ 1) ≡ 0 (mod m) ⇔ x ≡ 1 (mod m) or x ≡ m− 1 (mod m).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Property of Twin Primes

We determine the product of the invertible quadratic residues in Zn. This is a variation on Gauss’ generalization of Wilson’s Theorem. From this we deduce that for twin primes p, p + 2, the product of the invertible quadratic residues in Zp(p+2) is ±(p+1), where the sign depends on the residue class of p modulo 4. We examine necessary and sufficient conditions for consecutive odd natural number...

متن کامل

Shortcut Node Classification for Membrane Residue Curve Maps

comNode classification within Membrane Residue Curves (M-RCMs) currently hinges on Lyapunov’s Theorem and therefore the computation of mathematically complex eigenvalues. This paper presents an alternative criterion for the classification of nodes within M-RCMs based on the total membrane flux at node compositions. This paper demonstrates that for a system exhibiting simple permeation behaviour...

متن کامل

A Note on Mod and Generalised Mod Classes

We characterise Mod classes in terms of #P functions, where the membership is determined by co-primality or gcd testing of the function value (Theorem 3.1), instead of residue (mod k) testing. Imposing a restriction on the range of the functions gives a characterisation of the intersection of Mod classes (Theorem 3.2). These intersection classes, which we denote by Mod ∩k P , are interesting be...

متن کامل

On the Addition of Residue Classes Modp By

In this paper we investigate the following question. Let p be a prime, a,, " ', cck distinct non-zero residue classes modp, N a residue class modp. denote Dhe number of solutions of the congruence ela,+... + ekak = N(modp) where the e,,. .. , ek are restricted to the values 0 and 1, What can be said about the function J?(N)? We prove two theorems. THEOREM I. 14 " (X) > 0 if k > 3 (6;~) " ~. THE...

متن کامل

Coincidence point theorem in ordered fuzzy metric spaces and its application in integral inclusions

The purpose of this paper is to present some coincidence point and common  fixed point theorems for multivalued contraction maps in complete fuzzy  metric spaces endowed with a partial order. As an application, we give  an existence theorem of solution for general classes of integral  inclusions by the coincidence point theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008